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Abstract: Reactions of the cross-conjugated dienolate of 3-substituted 2-cyclohexenone 1b and 1¢, 2-cyclohexenone
(1d), and 2 3-disubstituted 2-cyclohexenone le with methyl (S)-3-(2,2-dimethyl-1,3-dioxolan-4-yl)-2-propenate (Z)-2 gave
highly diastereoselectively 3b, 3¢, 3d and 3e, respectively. The pr of a methyl group at C-6 on cyclohexenone ring
caused the stereoselectivity to change completely, so that the reaction of the lithium enolate of 9 with (Z)-2 and with (E)-
2 gave predominantly 11 and 12, respectively.

Bicyclo[2.2.2]octane derivatives are versatile intermediate in total synthesis of natural products having
various types of carbon skeletons. Reactions of cross-conjugated dienolate anion with Michael acceptors have
been found effective for synthesizing substituted bicyclo[2.2.2]octanes! as has also Diels-Alder reaction. In the
previous communication, we have reported highly stereoselective reactions of the cross-conjugated dienolate of
3-methoxymethyloxy-2-cyclohexenone (1a) with methyl (S)-3-(2,2-dimethyl-1,3-dioxolan-4-yl)-2-propenate
(Z)-2 and (E)-2 giving optically active bicyclo{2.2.2]octane derivative 3a and 7/8, respectively.2:3 While
conducting the synthesis of natural products using bicyclo[2.2.2Joctanes as chiral building block,# assessment
was made for the scope of application of this method. This paper discusses the effects of C-2, C-3 and C-6
substitutent groups of cyclohexenone ring on selectivity in this cyclization reaction.

Examination was initially made of the effects of C-3 substituent groups (R;) of 2-cyclohexenone. The
reactions of cross-conjugated dienolates, prepared from enone 1b (R;=OMe), 1c¢ (Ry;=Me) and 1d (R,=H) and
lithium diisopropylamide, with (Z)-25 in THF at low temperature (-78°C, 10 min; -42°C, 2 h; -42 to 25°C, 2 h;
25°C, 1 h) gave 3b,5 mp 142°C; [, -35.0° (c 4.0, CHCl3, 3¢, mp 113°C); [o]p -28.0° (c 2.48, CHCly),’
and 3d, mp 60°C; [(X.]D25 -24.3° (c 3.2, CHCL), as single isomers, respectively (Scheme 1). The
stereochemistry of 3b-d was determined by the formation of lactone ketal 4, mp 131°C; [(:(.]D7-s -9.4° (¢ 0.38,
CHCl3), 5, mp 130°C; [@]p 2 +41.6° (¢ 0.57, CHCl3),3 and 6, mp 95°C; [ 42.5° (¢ 0.7, CHCl3), on
treatment of them with a catalytic amount of p-toluenesuifonic acid in methanol. Groups at C-3 would thus
appear not to have any effect on stereoselectivity in the cyclization reaction. The influence of C-2 substituent
group was subsequently investigated. The reaction of the enolate of 2-methyl-3-methoxymethyloxy-2-cylo-
hexenone (le) with (Z)-2 gave 3e.8 mp 130°C; [(I]D25 +12.7° (¢ 1.73, CHCl3), as an only identified product.
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The stereoselectivity of this reaction is thus not affected by the methyl group of C-2.

However, the presence of a methyl group at the C-6 position of 2-cyclohexenone caused dramatic change
in stereoselectivity. Reaction of the enolate of 6-methyl-3-methoxymethyloxy-2-cyclohexenone (9) with (Z)-2
under similar reaction conditions afforded unexpected product 11,9 mp 101-4°C; [a]D“ +121° (¢ 1.0, CHCly),
as the major isomer accompanied with 10,1° mp 105-6°C; [(Jr.]D24 -8.5° (¢ 1.0, CHCls), corresponding to 3
(Scheme 2). The ratio of 10 and 11 was 1:3.5.1 The arrangement of the methoxycarbonyl group at C-5 and the
1,3-dioxolane moiety at C-6 in 11 was trans.!? Reaction of the enolate of 9 with (E)-24¢ gave predominantly
12,1314 mp 65-6°C; [a]p?* -85.0 (c 2.1, CHCI3), corresponding to 8 with a small amount of exo adduct 13,15
mp 68-9°C; [a]p?* -60.4 (c 1.0, CHCl3), (12:13=12:1).12 The configuration of 10 could be definitely
determined by conversion to 14 as also shown for 3b-d. Those of 11, 12 and 13 were determined by their
chemical correlation with 10 (Scheme 3). Acid hydrolysis of the acetonide group in 13 followed by NalOy4
oxidation gave (-)-15, [(x]D24 -90° (c 1.0, CHCl3), whose antipode (+)-15, [or.],)f"4 +103° (c 0.29, CHCl3),
was obtained from 10 in three steps. Keto ester 10 was transformed to dibenzylether 16 and it was also
obtained from 12.4¢ 12 was converted to keto aldehyde (-)-17, [ot]l:,24 -174° (c 1.0, CHCly), in three steps. Its
enantiomer (+)-17, [ct]D24 +172° (¢ 1.0, CHCl3), was obtained from 11 by similar treatment.
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Reagents: A. MeOH, p-TsOH, 70°C, 24 h, 91%,; B. i) -BuOK, THF-DMSO (2:1), 0°C, 15 min, 70%; ii) AcCOH-
Hy0 (4:1), 25°C, 48 h; iii) NalO4, MeOH-5% NaHCO3 (3:1), 0°C, 3 h, 40% (2 steps); C. i) 80%AcOH, 25°C, 24 h,
82%; ii) NalO4, MeOH-H20, 25°C, 2 h, 81%; D. i) L-selectride, THF, -78°C, 10 h, 96%; ii) LiAIH4, THF, 25°C, 2 h,
then 50°C, 1 h, 88%; iii) BnBr, NaH, DMF, 25°C, 6 h, 96%; iv) 80%AcOH, 25°C, 4 h, 76%; v) NalO4, MeOH-H20
(2:1), 0°C, 1.5 h, 92%; vi) NaOH, EtOH, 25°C, 2 h, 87%; E. i) LiAlH4, THF, 0°C 2 h, 25°C 12 h, 20-OH (76%), 2-
OH (18%)); ii) separation by silica gel column chromatography; iii) BnBr, NaH, DMF, 25°C, 7 h, 99%; iv) 80%AcOH,
25°C, 24 h, 83%; v) NalO4, MeOH-H0 (2:1), 0°C, 1.5 h, 92%; F. i) 80%AcOH, 25°C, 48 h; ii) NalO4, MeOH-H20,
25°C, 1.5 h, 57% (2 steps); G. i) 80%AcOH, 25°C, 24 h, 71%; ii) NalO4, MeOH-H20, 25°C, 1.5 h, 84%

Stereoselectivty in the reactions of 1 with (Z)-2 and with (E)-2 can be explained by considering transition
state A leading to 3 and B leading to 7, respectively, as shown in Figure 1. In both states, the dienolate of 1
approaches 2, which has a stable conformation (Z)-2a or (E)-24, from the less hindered side with coordination
between the lithium cation of dienolate 1 and the carbonyl oxygen of 2. The reaction of 9 with (E)-2 apparently
proceeds via transition state D (Figure 2). In this case, transition state C corresponding to B is disfavored since
there is steric repulsion between the newly introduced methyl group at C-6 and allylic oxygen. The mechanism
for the formation of 11 from 9 and (Z)-2 is not clear, but the route shown in Figure 3 appears to have a likely
possibility. In this case, transition state E (corresponding to C) is superior to F (corresponding to D), because
there is strong steric repulsion between the methoxycarbonyl group and allylic oxygen in (Z)-28. Following the
first Michael addition,!¢ the C-C bond between C-5 and C-6 in i rotated to form ii which subsequently
underwent the second Michael addition.
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In summary, the stereoselectivity of sequential Michael reactions of the enolate of 2-cyclohexenones with
(S)-4,5-di-O-isopropylidenepent-2-enoate (Z)-2 and with (E)-2 is not affected by 2- or 3-substituent on the
cyclohexenone ring, but is strongly influenced by 6-substituent. Bicyclof2.2.2]octanes 3, 7, 11 and 12 thus
obtained should be useful chiral building blocks for synthesizing natural products.
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15. Minor isomer 13 used for spectral data and chemical transformation was obtained by the similar procedure as
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16. Clear explanation why this reaction proceeded via nonchelation control was not found so far.
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