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Abstracti Reactions of the cross-conjugated dienolate of 3-substituted 2-cyclohexenone lb and lc. 2-cyclohucnom 
(Id). and 23-disubstitnted 2-cvclohexenone Ie with me&l (S)-3-(22-dimcrh~l-l3-~o~l~4-vl~-2-oro~~ (Z&2 pm 
highly diastereoselectively 3b;Sc. 3d and 3e. respective&. ?he pie&cc of; me&l group at &5 0; c&ohex&&e”ting 
caused the stereoselectivity to change completely, so that the reaction of the lithium e&ate of 9 with (Z)-2 and with (E)- 
2 gave predominantly II and 12. respectively. 

Bicyclo[2.2.2]octane derivatives are versatile intermediate in total synthesis of natural products having 

various types of carbon skeletons. Reactions of cross-conjugated dienolate anion with Michael acceptors have 

been found effective for synthesizing substituted bicyclo[2.2.2]octanest as has also Diels-Alder reaction. In the 

previous communication, we have reported highly stereoselective reactions of the cross-conjugated dienolate of 

3-metboxymethyloxy-2-cyclohexenone (la) with methyl (S)-3-(2,2-dimethyl-l,3-dioxolan-4-yl)-2-propenate 

(Z)-2 and (E)-2 giving optically active bicyclo[2.2.2]octane derivative 3a and 7/B, respectively.2g While 

conducting the synthesis of natural products using bicyclo[2.2.2]octanes as chiral building block,4 assessment 

was made for the scope of application of this method. This paper discusses the effects of C-2, C-3 and C-6 

substitutent groups of cyclohexenone ring on selectivity in this cyclization reaction. 

Examination was initially made of the effects of C-3 substituent groups (Rt) of 2-cyclohexenonc. The 

reactions of cross-conjugated dienolates, prepared from enone lb (Rt=OMe), lc (Rt=Me) and Id (Rl=H) and 

lithium diisopropylamide, with (Z)-2s in THF at low temperature (-78°C 10 min; -42T, 2 h; -42 to 25OC, 2 h; 
25T, 1 h) gave 3b,6 mp 142’C; [al,25 -35.00 (c 4.0, CHCl3,3c, mp 113T); [c+,~ -28.00 (c 2.48, CHC!13),7 

and 3d, mp 6O’C; [alr,25 -24.3’ (c 3.2, CHC13), as single isomers, respectively (Scheme 1). The 

stereochemistry of 3b-d was determined by the formation of lactone keta14, mp 131°C, [u]ou -9.4O (c 0.38, 

CHCls), 5, mp 13O”C, [cr]u 25 +41.6’ (c 0.57, CHC13),3b and 6, mp 95T; [aIDas 42.5’ (c 0.7, CHCls), on 

treatment of them with a catalytic amount of p-toluenesulfonic acid in methanol. Croups at C-3 would thus 

appear not to have any effect on stereoselectivity in the cyclization reaction. The influence of C-2 substituent 

group was subsequently investigated. The reaction of the enolate of 2-methyl-3-methoxymethyloxy-2-cylo- 
hexenone (le) with (Z)-2 gave 3e,8 mp 13O’C; [a]oz +12.7’ (c 1.73, U-Q), as an only identified product. 
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The steteoselectivity of this reaction is thus not affected by the methyl group of C-2. 

However, the presence of a methyl group at the C-6 position of 2-cyclohexenone caused dramatic change 

in stereoselectivity. Reaction of the enolate of 6-methyl-3-methoxymethyloxy-2-cyclohexenone (9) with (Z)-2 
under similar reaction conditions afforded unexpected product 11,9 mp lOl-4OC, [a],24 +121° (c 1.0, CHC13), 

as the major isomer accompanied with 10,l" mp 1056“C; [t~],~ -8.5” (c 1.0, C!HC!l$, corresponding to 3 

(Scheme 2). The ratio of 10 and 11 was 1:3.5.t1 The arrangement of the methoxycarbonyl group at C-5 and the 

1 ,fdioxolane moiety at C-6 in 11 was trans. ** Reaction of the enolate of 9 with (E)-24c gave predominantly 
l2,t3J4 mp 656T; [a],” -85.0 (c 2.1, CHC13). cotresponding to 8 with a small amount of exo adduct l3,ts 

mp 68-9% [a]t,24 -60.4 (c 1.0, CHCl3), (12:13=12:1). t2 The configuration of 10 could be defiitely 

determined by conversion to 14 as also shown for 3b-d. Those of 11,12 and 13 were determined by their 

chemical correlation with 10 (Scheme 3). Acid hydrolysis of the acetonide group in 13 followed by NaIO4 
oxidation gave (-)-15, [a]oM -90’ (c 1.0, CHCl3). whose antipode (+)-15, [alDM +103' (c 0.29, CHCl& 

was obtained from 10 in three steps. Keto ester 10 was transformed to dibenzylether 16 and it was also 
obtained from 12.k 12 was converted to keto aldehyde (-)-17, [all,” -174’ (c 1.0, CHQ), in three steps. Its 

enantiomer (+)-17, [a]02” +172’ (c 1.0, CHC13), was obtained from 11 by similar treatment. 

Scheme 2 
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Reagents A. Me-OH, pTsOH. 70°C, 24 h. 91%; B. i) r-BuOK, THF-DMSO (2~1). WC. 15 min. 70% ii) AcOH- 
H20 (4~1). 25oC, 48 h; iii) NaIO4. WH-5% NaHm (3:l). PC, 3 h. 40% (2 steps); C. i) 8O%AcOH. 25’C. 24 h, 
82%. ii) NaIO4, MeOH-Hfi. 25oC. 2 h. 81% D. i) Gsclectridc. THF, -7W. 10 h, %9b, ii) Lii. THF, 25°C 2 h. 
then 5ooc. 1 h, 88% iii) BnBr. NaH, DMF. 25°C. 6 h, %8; iv) 809bAcOH. 25“C. 4 h. 76%; v) NaI04, MeOH-& 
(2:1), O“C, 1.5 h. 9296; vi) NaOH, ISOH, 25“C. 2 h, 875; E. i) LiAlHq, THF, OOC 2 h. 25oC 12 h. 2a-OH (76%). 2fl- 
OH (18%); ii) sparation by silica gel column chmmatography: iii) BnBr, NaH, DMF. 25°C. 7 h, 99%. iv) 8O%AcOH, 
25”c, 24 h, 83% v) NaIO4. MCOH-H$I (2~1). 0“C. 1.5 h, 92%. F. i) 8O%AcOH, 25°C. 48 h; ii) NaI04, MeOH-H20, 
2X, 1.5 h, 57% (2 steps); G. i) 8O%AcOH, 25oC, 24 h, 71%. ii) NaIO4, MeOH-Hfl. 25°C. 1.5 h. 84% 

Stereoselectivty in the reactions of 1 with Q-2 and with (Q-2 can be explained by considering transition 

state A leading to 3 and B leading to 7, respectively, as shown in Figure 1. In both states, the dienolate of 1 

approaches 2. which has a stable conformation Q-2~ or (Q-2& from the less hindered side with coordination 

between the lithium cation of dienolate 1 and the carbonyl oxygen of 2. The reaction of 9 with (E)-2 apparently 

proceeds via transition state D (Figure 2). In this case, transition state C conesponding to B is disfavored since 

the= is steric repulsion between the newly introduced methyl group at C-6 and allylic oxygen. The mechanism 

for the formation of 11 from 9 and (2)-2 is not clear, but the route shown in Figure 3 appears to have a likely 

possibility. In this case, transition state E (corresponding to C) is superior to F (corresponding to D), because 

there is strong steric repulsion between the methoxycarbonyl group and allylic oxygen in (Zj-28. Fdowing the 

first Michael addition,l’j the C-C bond between C-5 and C-6 in i rotated to form ii which subsequently 

underwent the second Michael addition, 

Ficr. 1 Q-L! 



Fig. 3 I 

In summary, the sten~oselectivity of sequential Michael reactions of the enolate of 2-cyclohexenones with 

(S)-4,5di-O-isopropylidenepent-2-enoate (Z)-2 and with (E)-2 is not affected by 2- or 3-substituent on the 

cyclohexenone ring, but is strongly influenced by 6-substituent. Bicyclo[2.2.2]octanes 3,7.11 and 12 thus 

obtained should be useful chiraI building blocks for synthesizing natural products. 
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